Mechanisms of Takotsubo cardiomyopathy; role of microcirculatory dysfunction




Takotsubo cardiomyopathy, Microvascular dysfunction, TIMI frame count, Coronary flow reserve, Microcirculatory disorder


Takotsubo cardiomyopathy is characterized by reversible left ventricular dysfunction typically preceded by an emotional or a physical stressor. The underlying pathophysiologic mechanisms include multivessel coronary vascular spasm, microvascular dysfunction, neurogenic stunning of the myocardium and catecholamine surge. Microcirculatory dysfunction may play a key role in the evolution of this syndrome especially in the acute phases of the illness. Severe invasive and noninvasive modalities are utilized to ascertain any compromise in coronary perfusion in Takotsubo cardiomyopathy, including Doppler guidewire technique, Thrombolysis in myocardial infarction (TIMI) frame count (TFC), TIMI myocardial perfusion grade (TMPG) and nuclear imaging techniques. TIMI frame count can be utilized as a diagnostic marker and clinical indicator in assessment of microvascular function or coronary flow in patients with Takotsubo cardiomyopathy.


Khalid N, Ikram S. Coronary flow assessment in Takotsubo cardiomyopathy with TIMI frame count. Int J Cardiol. 2015; 30; 197:208. doi: 10.1016/j.ijcard.2015.06.078.

Khalid N, Chhabra L. Takotsubo cardiomyopathy and microcirculatory dysfunction. Nat Rev Cardiol. 2015; 12:497. doi:10.1038/nrcardio.2015.88

Khalid N. Microcirculatory disorder hypothesis in Takotsubo cardiomyopathy. Int J Cardiol. 2015; 195:29. doi: 10.1016/j.ijcard.2015.05.095.

Khalid N, Ikram S. Microvascular dysfunction in Takotsubo cardiomyopathy; prognostic implications. Int J Cardiol. 2015; 201:58-59. DOI:

Khalid N, Ahmad SA, Umer A. Coronary flow reserve assessment via invasive and noninvasive means in Takotsubo cardiomyopathy. Int J Cardiol. 2016; 202:573. doi: 10.1016/j.ijcard.2015.09.109.

Khalid N; Ahmad SA; Umer A, Chhabra L. Role of microcirculatory disturbances and diabetic autonomic neuropathy in Takotsubo cardiomyopathy, Crit Care Med. 2015; 43:e527. doi: 10.1097/CCM.0000000000001183.

Khalid N, Ahmad SA, Chhabra L, Spodick DH. Autonomic dysfunction and Takotsubo cardiomyopathy. Am J Med. 2015; 128:e45-6. doi: 10.1016/j.amjmed.2015.06.013.

Khalid N, Iqbal I, Coram R, Raza T, Fahsah I, Ikram S. Thrombolysis In Myocardial Infarction Frame Count in Takotsubo Cardiomyopathy. Int J Cardiol. 2015; 191:107-8. DOI:

Khalid N, Iqbal I, Ikram S. Thrombolysis in myocardial infarction frame count in takotsubo cardiomyopathy. J Am Coll Cardiol. 29 (191) (2015), pp. 107–108. doi:10.1016/S0735-1097(13)60051-0

Gibson CM, Cannon CP, Daley WL, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996; 93:879-88.

Chhabra L, Khalid N, Kluger J, Spodick DH. Lupus myopericarditis as a preceding stressor for takotsubo cardiomyopathy. Proc (Bayl Univ Med Cent). 2014; 27:327-30.

Khalid N, Ahmad SA, Umer A, Chhabra L. Takotsubo cardiomyopathy and myopericarditis: Unraveling the inflammatory hypothesis. Int J Cardiol. 2015; 196:168-9. doi: 10.1016/j.ijcard.2015.05.175

Khalid N, Chhabra L. Takotsubo Cardiomyopathy and Viral Myopericarditis: An Association Which Should be considered in the Differential Diagnosis. Angiology. 2015 May 12. pii: 0003319715585665. doi: 10.1177/0003319715585665

Bybee KA, Prasad A, Barsness GW, et al. Clinical characteristics and thrombolysis in myocardial infarction frame counts in women with transient left ventricular apical ballooning syndrome. Am J Cardiol. 2004; 94:343-6. DOI:

Kurisu S, Inoue I, Kawagoe T, et al. Myocardial perfusion and fatty acid metabolism in patients with tako-tsubo-like left ventricular dysfunction. J Am Coll Cardiol. 2003; 41:743-8. doi:10.1016/S0735-1097(02)02924-8

Fazio G, Sarullo FM, Novo G, et al. Tako-tsubo cardiomyopathy and microcirculation. J Clin Monit Comput. 2010; 24:101-5. doi: 10.1007/s10877-009-9217-5.

Kume T, Akasaka T, Kawamoto T, et al. Assessment of coronary microcirculation in patients with takotsubo-like left ventricular dysfunction. Circ J. 2005;69:934 –939.

Yoshida T, Hibino T, Kako N, et al. A pathophysiologic study of tako-tsubo cardiomyopathy with F-18 fluorodeoxyglucose positron emission tomography. Eur Heart J. 2007;28:2598 –2604. DOI:

Elesber A, Lerman A, Bybee KA, et al. Myocardial perfusion in apical ballooning syndrome correlate of myocardial injury. Am Heart J. 2006;152: 469.e9 – 469.e13 DOI:

Ito K, Sugihara H, Katoh S, Azuma A, Nakagawa M. Assessment of Takotsubo (ampulla) cardiomyopathy using 99mTc-tetrofosmin myocardial SPECT--comparison with acute coronary syndrome. Ann Nucl Med. 2003;17:115-22.

Nishikawa S, Ito K, Adachi Y, Katoh S, Azuma A, Matsubara H. Ampulla ('takotsubo') cardiomyopathy of both ventricles: evaluation of microcirculation disturbance using 99mTc-tetrofosmin myocardial single photon emission computed tomography and doppler guide wire. Circ J. 2004;68:1076-80.

Sharkey SW, Lesser JR, Menon M, Parpart M, Maron MS, Maron BJ. Spectrum and significance of electrocardiographic patterns, troponin levels, and thrombolysis in myocardial infarction frame count in patients with stress (tako-tsubo) cardiomyopathy and comparison to those in patients with ST-elevation anterior wall myocardial infarction. Am J Cardiol. 2008; 101:1723-8.. DOI:

Abe Y, Kondo M, Matsuoka R, Araki M, Dohyama K, Tanio H. Assessment of clinical features in transient left ventricular apical ballooning. J Am Coll Cardiol. 2003; 41:737-42. doi:10.1016/S0735-1097(02)02925-X

Shewan LG, Coats AJS, Henein M. Requirements for ethical publishing in biomedical journals. International Cardiovascular Forum Journal 2015;2:2 DOI: 10.17987/icfj.v2i1.4